Spillage Test Procedure

Current Procedure

Calibration at each fueling location Three trials at each of 1, 5 and 25 ml Ignores spills less than 1 ml in size

New Procedure

One calibration per facility

Three trials at 1, 2, 3, 4, 5, 10, 25 and 50 ml

All spills of 1 drop or more included

"Dripless" Nozzles No more than 1 drop per fueling. Proposed Test Methodology

- ◆ Customer asked if fueling is to be a fill-up
- ◆ If yes, CARB staff requests to fuel vehicle
- ◆ Fueling is at high clip or, if no clip, fully open
- ♦ When nozzle shuts off, wait (timed) 5 secs.
- → Remove nozzle from fillpipe
- ◆ Away from car, point nozzle downward
- ♦ Observe and record drips

Spillage, Liquid Retention, and "Dripless" Nozzles

- Concern About the Magnitude of the Emissions from these Sources
 - 14.2 Billion Gallons per Year in California
 - 6.24 pounds per gallon of gasoline
 - 20 drops = 1 ml
 - 3785 ml = 1 gallon
- 1 drop/10 gal fueling = **58.4 TPY** in CA

Spillage, Liquid Retention, and "Dripless" Nozzles

Dripless Nozzles: 1 drop / fueling

= 58.4 TPY

Liquid Retention: 100 ml / 1,000 gals.

= 1ml / 10 gals

=1080 TPY = 2.96 TPD

Nozzle "Spitting" ≤ 1ml / nozzle / fueling

Spillage: 0.42 lbs /1,000 gals

= 11.9 TPD

Proposed Revisions to the Certification Procedure

- ◆More Stringent Standards and Specifications
- ◆Operational Test of at Least 180 Days
- **◆**Efficiency Test on 200 Vehicles
- ◆Limits on Emissions from Processors (CO, NOx and HAPS)
- **◆Limited Term Certifications**

Performance Standards and Performance Specifications

- ◆ Evidence of compliance with the standards and specifications shall be provided in the application for certification, along with the results of tests demonstrating compliance.
- ◆ The system shall demonstrate ongoing compliance with all applicable standards and specifications throughout certification testing.
- ◆ Systems and components shall comply with all performance standards and specifications throughout the warranty period.

Performance Standards and Specifications Tables

- ◆Table 3-1 Phase I Systems
- ◆Table 4-1 All Phase II Systems
- ◆Table 5-1 Additional Balance Systems
- ◆Table 6-1 Additional All Assist Systems
- ◆Table 7-1 Additional Common Collection Unit
- ◆Table 8-1 Additional Destructive Processor
- ◆Table 8-2 Additional Non-Destructive Processor

Performance Standards and Specifications Tables

- ◆More than One Table Will Apply
- **♦**Examples:
 - ◆Balance: Tables 3-1, 4-1, 5-1
 - ◆Dispenser-based Systems (Gilbarco, Wayne, etc): Tables 3-1, 4-1, 6-1
 - **♦**Central Vacuum Systems:

Healy: Tables 3-1, 4-1, 6-1, 7-1

Hirt/Hasstech: Tables: all except 5-1, 8-2

All Phase I Systems

- ◆Phase I Efficiency ≥ 98%
- ◆ Emission Factor HC ≤ 0.17 #/1000 gals
- ◆ Product Adaptor Rotatable 360° or equivalent
- ◆ Drop tube with
 - Overfill Protection ≤ 0.17 CFH at 2.0 " wc
- ◆Vapor Adaptor ≤ 0.17 CFH at 2.0 " wc Rotatable 360° or equivalent Poppeted
- ◆ Criteria for Pressure/Vacuum Vent Valves

All Phase II Systems

- ◆Emission Factor HC ≤ 0.42 #/1,000 gals
- ◆"Dripless" Nozzles ≤ 1 drop per fueling
- ◆Spillage ≤ 0.42 #/1,000 gals (including drips from spout)
- ◆Liquid Retention ≤ 100 ml/1,000 gals
- **♦** More Stringent Component Integrity
- ◆Compatible with ORVR-equipped vehicles
- **◆**Compatible with Phase I systems

All Phase II Systems UST Pressure

- **♦Balance** ≤ 0.00 " H_2O for Minimum of 16 hr/day ≤ 0.25 " H_2O Ave. of Positive Pressure Maximum of 1.5 " H_2O for 1 hour/day
- **♦Assist** Negative Pressure Maintained -0.25 " $H_2O \ge P \ge -4.5$ " H_2O
- ◆Innovative System does not comply with an identified Standard or Specification, but can meet intent of the requirement in another way.

In-Station Diagnostics (ISD)

- ◆Shall activate visible and audible alarms, and/or prohibit dispensing, in response to certain failures, and shall monitor and create a record of performance for the last 12 months.
- ◆Parameters to be monitored:
 - **♦**UST Pressure
 - ◆Balance System Vapor Return Line (no blockage)
 - ◆Assist System Air to Liquid (A/L) Ratio, or equivalent
 - **♦**Processor function

Questions?